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Recent measurements of the skewness of the derivative of the temperature fluctua- 
tion 8, implying the breakdown of local isotropy even in high Reynolds number 
shear flows, are examined. Using the temperature signal in a slightly heated axi- 
symmetric jet, a detailed quantitative analysis is made of the suggestion that the 
observed presence of a well-defined large-scale pattern of the temperature signal in 
these flows is responsible for this breakdown. A selective ensemble averaging technique 
is used for separating this pattern from fluctuations superposed on it. The technique 
is extended to extract the large-scale patterns in simultaneously measured axial (u), 
radial (v) velocity fluctuations, and the products uv, uB and v0, so that it is possible 
to separate contributions of these patterns from those of the superposed fluctuations 
to several important turbulent quantities. The mean shape of the patterns, their 
degree of anisotropy and correlation, and their contribution to turbulence intensities 
and Reynolds shear stress are obtained. Probability densities and spectra of these 
quasi-homogeneous superposed fluctuations are also obtained. Results show that the 
fluctuations are consistent with local isotropy and make the dominant contribution to 
the turbulence intensities, that the large-scale patterns are responsible for the observed 
skewness values of the derivative of v, and that the fluctuations may be responsible 
for a significant part of the turbulent momentum and heat transport, especially in 
the region of the jet where the turbulent energy production is substantial. 

1. Introduction 
The concept of local isotropy is of central importance to the theory of turbulence 

because its validity implies a certain universality of the small-scale motion. Local 
isotropy (or isotropy at  small scales) implies that the small-scale structure becomes 
independent of details of any orientation effects introduced by the mean shear. 
Several implications of local isotropy have been verified by many earlier experiments 
(e.g. Corrsin 1949; Townsend 1948). Recently, however, as more and more detailed 
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FIGURE 1. Variation of ISe,\ with R,. Gibson et al. (1977): 0, atmospheric boundary layer; 
0,  heated jet; 0 ,  heated wake; 0, cooled wake, A, Mestayer et al. (1976), heated boundary 
layer. 7 ,  Gibson et al. (1970), atmospheric boundary layer (corrected for velocity sensitivity); 
X ,  Antonia & Van Atta (1975), heated jet. Freymuth & Uberoi (1971, 1973): 0, heated 
two-dimensional wake; a, heated axisymmetric wake. 0, a, 0, 0, Sreenivasan, Antonia & 
Danh (1977), heated boundary layer. m, our unpublished data, atmospheric surface layer. 
0, 6, 0, 9, 0, present data, axisymmetric heated jet, r]  = 0, 0.89, 1.15, 1.48 and 1.63 
respectively. ---, suggested mean trend. 

parameters are measured with increasingly reliable and sophisticated instrumenta- 
tion, experimental evidence in apparent conflict with local isotropy of shear flow 
turbulence appears to be accumulating. Perhaps the most significant evidence is the 
observation, in both laboratory and atmospheric flows, that the skewness Ses of the 
streamwise derivative 8, is a non-zero quantity of magnitude about 1. (The other 
relevant evidence is discussed by Sreenivasan, Antonia & Britz 1978.) The skewness 
data obtained by various authors in several flows are summarized in figure 1. The data 
cover a fairly wide range of the microscale Reynolds numbert R, ( g u'h/v, where u' 
is the root-mean-square fluctuation of the streamwise velocity, h is the Taylor 
microscale and v is the kinematic viscosity). In  spite of the considerable scatter, it is 
clear that exhibits no significant trend with R, for Rh 2 50; the mean valueis 
about 0.8. 

If the Reynolds number is sufficiently large, it seems logical to expect local isotropy 
to prevail a t  all wavenumbers which contribute most to  0,. Detailed calculations 
(see appendix A) show that this is indeed to be expected even a t  moderate Reynolds 
numbers, say R, of about 100. It then follows from reflexional symmetry that an 
odd order mean value such as z s h o u l d  be zero in most of the flows represented in 
figure 1. The evidence in figure 1 has therefore been regarded as a direct violation of 

t Strictly speaking, the relevant parameter here must be the PBclBt number u'h,/k: where h, 
is the temperature microscale and k is the thermal diffusivity. But the ratio of PBcl6t to Reynolds 
numbers is a constant of order 1 in these flows, so that it is convenient and sufficiently precise 
to use Reynolds number as the only relevant parameter. 
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FIQURE 2.  Presence of ramps in a trace of temperature in axisymmetric heated jet, obtained 
in the region of maximum production of turbulent energy. Intermittency factor N 0.93. 

local isotropy. Wyngaard (1971) attempted to  explain this paradoxical result by 
the possibility of the contamination of the measured temperature by the velocity 
sensitivity of the temperature wire. The error due to this velocity contamination 
is now known to be much smaller (at least in the more recent measurements) than 
that anticipated by Wyngaard (see, e.g., Gibson, Friehe & McConnell 1977; Mestayer 
et al. 1976); further this correction is always positive while the measured skewness 
may be of either sign. (Gibson et al. ( 1  977) find that the sign of Soz is the same as that 
of the product of the mean vorticity and the mean temperature gradient.) 

A possible alternative explanation (Gibson et al. 1977; Sreenivasan & Antonia 
1977) is that the apparent breakdown of local isotropy relates to the presence of 
certain well-defined patterns in turbulent signals even for high Reynolds number 
shear flows. For example, it is well recognized (see, e.g., Antonia, Prabhu & Stephenson 
1975; Mestayer et al. 1976; Gibson et al. 1977) that the temperature signals exhibit 
certain ramp-like patterns, both a t  moderate and high Reynolds numbers. Figure 2 
shows a trace of temperature fluctuation in an axisymmetric jet ; the ramps are also 
indicated tentatively in the figure. These ramp-like patterns may not be as clearly 
defined a t  all points in the flow, but the trace of figure 2 is in fact typical of tem- 
perature fluctuations in the region of maximum production of' turbulent energy. 
(There is inevitably some ambiguity in the exact definition of the ramp, but this is 
considered in some detail in 0 3 . )  The presence of sharp edges (such as AB in figure 2) 
in the ramps suggests that  a part (though small) of the high frequency content of 8 
arises directly from the ramps. Because of the asymmetry of the ramps, this small 
fraction of the derivative O2 is definitely skewed ; this, we believe, is important. In fact, 
preliminary calculations (Sreenivasan & Antonia 1977) have shown that the part 
of 8, responsible for the observed non-zero magnitude of Soz arises almost exclusively 
from these ramps and not from the small scale. 

The temperature trace shown in figure 2 is for a radial position in the jet where, on 
average, the flow is turbulent for about 9 3 %  of the time. Further out into the 
intermittent region, the excursions (i.e. parts of the signal whose amplitude exceeds 
a certain pre-set threshold value) in the temperature signal are not as ramp-like as 
shown in figure 2 but, as we shall show in $0 3 and 4, they too possess, on average, a 
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skewed derivative, so that the argument of the previous paragraph is relevant also to 
strongly intermittent turbulent signals. 

The original motivation of the present work was to  examine, on a quantitative 
basis, the relation between these patterns and observations suggesting the breakdown 
of local isotropy. We proceeded to  do this by extracting patterns from the 
temperature signal and evaluating their contribution to  the skewness of 8,. As it 
soon became clear that a simple extension of the technique would allow us to  evaluate 
separately contributions of similar patterns in other turbulent signals from those of 
the superposed turbulence to  any flow property, such as the turbulent energy or the 
Reynolds shear stress, we addressed ourselves to  this general problem. 

The possible physical significance of splitting a turbulent signal into a more or 
less well-defined pattern and superposed fluctuations is worth examining. The length 
scale associated with the ramp-like pattern is comparable in magnitude to  the mean 
flow width, and the magnitude of the temperature rise in a ramp (e.g. AB in figure 2) 
is comparable t o  the total variation of the temperature in the flow. It seems therefore 
reasonable to interpret the ramp as the signature of the large-scale structure in a 
turbulent shear flow. Although caution is required (as discussed in 3 4 c) because of 
the three-dimensionality of the large structure and the inherent limitations of single 
probe measurements, the present study may help to assess the possible importance 
of the large structure to the dynamics of the flow. It is also worth emphasising that 
the superposed turbulence is not simply the small-scale dissipative turbulence, 
although it includes dissipative scales. I n  fact, it is shown in 5 4 that the superposed 
turbulence contains most of the energy, and is hence somewhat identifiable with 
Townsend’s (1976, p. 107) ‘main turbulent motion’. We share Townsend’s concern 
that a clear distinction may not be drawn between a ‘main turbulent motion’ and a 
set of ‘large eddies’, but, as in Townsend’s case, we find it convenient to  discuss the 
turbulent motion as if the distinction were valid. 

In  5 2, we discuss details of the technique by which different features of the large 
scale patterns and superposed turbulence are separated ; this section also contains 
details of experimental conditions and instrumentation. I n  5 3, we present average 
shapes of the large-scale patterns in u, v, 8, uv, u0, and v8 signals. Statistical properties 
of the superposed turbulence are examined in some detail in 5 4, with special emphasis 
on local isotropy. These results are discussed in 5 5 .  A simple assessment of conven- 
tional requirements of local isotropy is made for the present flow in appendix A. 
Appendix B is a critical examination of the technique used for generating information 
about the large structure or, more precisely, its signature. 

2. Experimental conditions and technique 
2.1. The jet 

The jet used for this study was supplied by a laboratory high pressure air supply at 
a constant velocity a t  the nozzle exit (diameter 1: 2 cm) of 32 m s-l. The air supply 
was heated electrically t o  a temperature of 34 “C above ambient. The jet Reynolds 
number at  the exit was 2.8 x lo4. The jet exhausted into a co-flowing external stream 
at a constant speed and constant temperature, supplied by a centrifugal blower. 
All measurements were made a t  a single streamwise station 59 diameters downstream 
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FIGURE 3. Sketch defining notation. 

of the nozzle exit. Figure 3 shows a'schematic diagram and defines the co-ordinate 
axes. L denotes the radial distance from the jet axis to  the position corresponding 
to half the maximum temperature (above ambient). The co-ordinate 7 is defined as 
the ratio r / L .  

2.2. Notation 

U and V are the components of instantaneous velocity in the streamwise direction x 
and radial direction r respectively ; 0 is the instantaneous temperature. Each variable 
X (where X denotes U ,  J' or 0 )  can be split into its (time) mean value x, defined by 

x' = lim 7-1 X ( t )  dt, 
T-+m s: 

and the fluctuating part x; here 7 is time. By definition, 5 = 0. If, a t  the point of 
measurement, the flow is intermittently turbulent, conditional averages x, are 
defined (over the turbulent part of the flow only) by the relation x, = I T / j ,  where 
the intermittency function I is equal to  one or zero, depending upon whether the 
flow is turbulent or not. I = y is the intermittency factor. 

Suffixes 1 and a are used to denote conditions corresponding to free-stream and 
jet axis respectively; suffix 0 denotes values a t  the jet axis in excess of free-stream 
values: x, = xl+.&. At the measuring station, L = 6.5 cm, uo = 3.1 m s-l, 
0, = 3.3 "C, ul = 4.85 m s-l, 8, = 15 "C. 
- 

2.3. Measurement and processing 

Velocity fluctuations u and v were obtained with a platinum-coated tungsten 
X-probe (5 pm diameter wires) operated with two DISA 55M01 constant temperature 
anemometers. The temperature fluctuation 8 was measured with a 1 pm diameter 
Wollaston wire located approximately 1 mm below the mid-point of the X-probe. 
The temperature wire was operated a t  a constant current of 0.1 mA, which is low 
enough to  ensure negligible velocity sensitivity. Hot-wire signals were decontaminated 
for their sensitivity to  temperature, in the manner described by Antonia et al. 
(1975). Signals proportional to  (decontaminated) u and w ,  and 8 were recorded 
simultaneously on a Philips ANALOG-7 FM tape recorder whose upper frequency 
response a t  the speed of recording was flat up to 5 kHz. The recorded signals were 
later played back into an A/D converter (10 bit including sign) and the digitized 
signals stored on magnetic tapes which were then processed on an ICL 1904 computer. 
The sampling frequency used was 12 kHz (real time). Most records had a (real time) 
duration of 27.7 s. For a few runs, a record duration of 70.4 s was used. 
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FIGURE 4. Simultaneous records of u, w, 0 and uw at an intermittent radial position, 
7 = 1.48 (7 1: 0.28). 

3.4. Technique for separating contributions from the large-smle and 
superposed tubulence 

The mean shape of excursions was obtained by ensemble averaging. As excursions 
have a wide range of duration, it is clear that ensemble averaging over excursions 
of all durations will smear the resulting mean shape. I n  order to avoid this, it is 
ideally necessary to restrict members of the ensemble to a given duration. However, 
practical considerations dictate that a small, but finite, range of durations be used. 
We recall that Antonia & Atkinson (1976) have determined that ramps of a given 
duration do not have widely varying peak amplitudes. This means that, by restricting 
ourselves to a narrow range of duration, we also consider a narrow range of peak 
amplitudes, thus ensuring the general similarity of shape for different members of 
the ensemble. This not only makes all ensemble average operations more meaningful 
than they would otherwise be, but also ensures a fairly rapid convergence. Ideally, 
of course, the finite range of duration must be as small as possible. Different mean 
durations as well as different ranges of duration around the mean value were tried, 
and the effects determined (see 3 3) .  

Identification and definition of duration of excursions is usually more precise with 
temperature than with velocity signals. The duration T of an excursion is defined 
as the time interval between an upcrossing and a subsequent downcrossing of a 
certain pre-set threshold. If heat acts as a passive scalar, it is highly plausible that the 
momentum and thermal interfaces will be identical, provided that the momentum 
and thermal flows have a common origin. In  such cases, intermittency functions 
generated either from temperature or velocity fluctuations have led essentially to 
the same intermittency distributions (Sunyach & Mathieu 1969 ; Jenkins & 
Goldschmidt 1976). A more direct indication of the accuracy of this assumption is 
provided in figure 4, which shows simultaneously measured traces of u, v and 8 and 
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the product uv a t  an intermittent flow position, 7 = 1-48 (y N 0.28). The figure also 
shows that the small separation of the velocity and temperature wires was not too 
crucial for these considerations. So it is clear that, whenever 8 is turbulent, u and v 
are too. This is true of the products uv (shown in figure 4) and u8 and v8 (not shown). 
Thus, ensemble averaging operations on u and v and products uv, u8 and v8 are 
performed over those parts which coincide in time with the occurrence of an excursion 
in 6. The ensemble averaging technique itself consists of the following steps. The time 
interval between two successive points, a t  which the temperature exceeds, during an 
upcrossing, and falls below, during the subsequent downcrossing, the pre-set threshold 
level is determined first. (The effect of changing the threshold level will be discussed 
in $ 3 . )  Then, if the duration between these two points lies within the range of interest, 
amplitude levels of u, v or 6 ,  and uv, u8  or v8 are obtained, by interpolation if 
necessary, a t  S equally spaced points within the excursion. (For convenience, S was 
chosen as the ratio of the mean duration to  the sampling interval.) A subsequent 
excursion in the same range of duration is treated similarly, and the amplitudes a t  
the S points are added to  the previous set of values at corresponding locations. 
Ensemble-averaged shapes, denoted by ( ), are obtained by dividing the sum a t  
each of the S points by the total number N of excursions belonging t o  the chosen 
range of duration. For convenience, we shall henceforth use the expression ‘given 
duration p’ to  signify ‘given range of duration centred about T’, where F denotes 
the arithmetic mean of the extreme values of the chosen range. 

The mean value of the ensemble average is defined by 

I F  (8) = F I  ( X )  dt, 
0 

where t (0  < t < F )  is t,he running time within the excursion (or the ensemble average 
of excursions). The double bar here and elsewhere indicates the time average over 
the duration corresponding t o  the ensemble of large-scale excursions. The quantity 
obtained by subtracting (X) from the i th member Xi of the ensemble represents 
the superposed motion x , ,~ ,  viz. 

xs,i = xi - ( X ) .  (2.2) 

It is clear that  x,, also form an ensemble with the same number of members as the 
original ensemble. The total superposed motion x, is made up of the collection of 
x,,~, over all the members of the ensemble. By definition, (xJ = 0, where the 
ensemble average is taken, as previously, over members X , , ~ ( F )  of the ensemble. 
It is also clear that  5, = 0. Further if F is large enough to  yield a steady time average 
of superposed fluctuations, g s , i ~  0 for each member i of the ensemble. This further 
means that, for large T ,  

(T) N x,. (2.3) 

We can also define the ‘r.m.s. ’ of x, by the relation 
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FIGURE 6. Mean velocity, mean temperature and intermittency profiles across the jet. 4 on the 
abscissa show the two radial positions (9  = 0.89 and 1.48) a t  which most of the data is presented 
here. 

Because ensemble averaging is performed over excursions in a given range of duration, 
the superposed motion defined by (2.4) is also defined over the same duration and 
is, where necessary, referred to as x,(F). Obviously, (2.4) defines only a subset of the 
totality of the superposed motion. This totality of the superposed motion is the 
collection of x ~ , ~  evaluated over the entire range of large-scale excursions. However, 
we shalI show in 4 that a properly chosen subset is a good wpresentative of the 
totality. 

Probability density functions of the superposed turbulence were obtained in the 
usual manner by counting the number of digital points at  a given level of xs and 
dividing them by the total number and the window width of the digital levels. The 
probability densities of the derivatives were obtained by differentiating each of the 
xs,i and treating this as another independent signal. 

The power spectral density of the superposed turbulence was also obtained. By 
definition, this requires that the spectral density be computed over the ensemble of 
x,,, i, but here this is approximated by stringing the ensemble members xs, together 
and using a fast Fourier algorithm on this collection. Treating this collection as a 
continuous entity poses no special problems, because only frequencies comparable to 
the sampling frequency can be expected to be affected by this artifice. 

3. Results: ensemble average shapes 
For reference purposes, mean (axial) velocity, mean temperature and intermittency 

profiles across the jet are given in figure 5 .  Other mean and turbulent quantities 
have been given in Antonia e t  al. (1975). 

Figure 6 shows ensemble averages of temperature excursions of different durations. 
From the examples shown, it appears that, for durations somewhat smaller than the 
characteristic mean flow time LIDa, the ensemble average shapes are symmetrical. 
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FIGURE 6. Ensemble average distributions of excursions of various durations in the temperature 
signal, 71 = 0.89: --- , TiUa/L = 0.38, AT/T = 
-*-, 1.63, 

0.5, N = 194; -. .--, 1.12, 5 0.11, 84: 
0.08, 66; -, 2.25, f 0.11, 112. 

It follows that they do not, on average, contribute to the skewness of 0,. On the 
other hand, ensemble averages of large duration excursions have well-defined 
asymmetrical shapes. Clearly, their contribution to @ is significant (e.g. Sreenivasan 
& Antonia 1977; Freymuth 1978).t  Also, as ensemble average shapes for p 2 L/Ua 
are very nearly similar, it seems sufficient, in future, to restrict our attention to 
durations of this type. 

Similarly, although not shown here, ensemble averages of excursions of v (and of u )  
of duration smaller than L/oa are very nearly symmetrical, and contribute nothing 
to the skewness of the derivative v, (and of u,). It is worth mentioning that they are 
almost exactly like ensemble averages of pseudo-bulges of white noise generated by 
setting an arbitrary artificial threshold (see appendix B). Again, for T 2 L/Ua, the 
shapes of ensemble averages are essentially independent of p ,  so that only one 
representative set needs to be discussed. 

As typical examples of average shapes of large-scale excursions, figures 7(a)-(f) 
show results (for four values of 7) of computations described in 3 2.4, for excursions 
of mean duration ?oa/L = 2.5. The interval A T  used for selecting members of the 
ensemble is & 0.2p. In these plots, five neighbouring points were averaged arithme- 
tically. In  figures 7(a)-(c), results are presented in the form ((X)-Xl)/& us. t / F ,  

t The asymmetrical temperature shape can be characterized by two length scales. The length 
associated with the gradual fall in temperature may be taken proportional to the integral length 
scale of the flow. The length characteristic of the steeper slope is more likely to be associated 
with the small scale of the turbulence. Freymuth (1978) has shown that, for a linear-ramp 
model, if this latter scale is proportional to the Kolmogorov scale, the ramp model is consistent 
with the result that So, is independent of R,. 
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FIGURE 7. Ensemble-averaged distributions of U ,  T', and of their products in bulges of duration 
= 2.5L/na; AT"/T = k 0.2. ( N  refers to the number of bulges found at  the particular value 

of 7.) 

where the time t is measured from the leading or downstream edge of an excursion. 
There are several possible ways of plotting the results, but this form was suggested 
by the conventional use of (s - X , ) / X o  vs. 7 when self-preservation of the quantity 
x is considered. Clearly, ((X} - X)/x0 or ((X) - S,)/I0 would have been as interest- 
ing, as considerations described in appendix B would suggest, but such quantities 
can be obtained from the present data by simple linear transformations. Figure 7(a)  
shows that interface bulges of a given duration have the largest axial velocity 
closest to  the axis. When referred to  the local mean velocity U (or the conditional 
mean turbulent velocity e,), however, ensemble averages ( ( U )  - ~ l ) / ~ o  [or 
(( U )  - gt)/UO] are smaller near the axis (see the ordinate scale on the right side of 
figure ?a) .  This result is consistent with tjhe notion that bursts of high-momentum 
fluid occur away from the jet axis (Sreenivasan & Antonia 1978). I n  general, ( V )  
shapes are nearly symmetrical. I n  contrast, { V )  shapes have relatively sharp fronts 
and gradually sloping backs. This last feature is even more pronounced for (0), and 
is in qualitative agreement with LaRue & Libby's (1976) ensemble averages of 8 in a 
turbulent wake. There is a significant region near the backs where ( V )  is negative, 
and essentially independent of 7, at  least for the range of 7 covered in the experiment. 
These results show that while the outward motion may be stronger at larger 7, the 
entrainment that occurs on the backs of interface bulges is essentially independent 
of 7. The maximum value of (O)-@,, decreases somewhat with increasing 7 (in 
contrast to ( V ) ) ,  although retaining essentially the same sharp leading edges. It is 
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interesting to note that the ensemble averages of 0 are substantially different from 
the somewhat simplified ramps suggested in $ 1  (see figure 2), and are closer to the 
exponential ‘ramps’ examined by Antonia & Atkinson (1976). However, as indicated 
in $ 2.4, it  is clear from figures 7 (b) and (c) that the large-scale excursions do contribute 
to the skewness of the respective derivatives through their sharp leading edges and 
the comparatively gradually sloped trailing edges. Quantitative estimates of this 
effect are given in $ 4. 

Figure 8(a)-( f )  shows the effect of varying A T  for a given T on the ensemble 
average calculations at  7 = 0.89. Here, Taa/L = 2.5 and ATIT varies by nearly 
a factor of 2.5. It is clear that the actual choice of A T  in this range is not a critical 
factor for obtaining the essential features of the ensemble average shapes. Also shown 
in figure 8 are the 95 yo confidence intervals for the case AT/T = & 0.2. Results 
shown in figure 8 correspond to a threshold which is different from that used for 
obtaining data of figure 7, the difference being approximately equal to the uncertainty 
in determining the proper threshold. A quick comparison between figure 7 (a)-(c) and 
8(a)-(c) shows that the threshold setting is not critical. The confidence intervals in 
figure 8 ( d ) - ( f )  show that the reliability of the ensemble averages of products is, as 
expected, poorer than that of individual quantities; they also show that the effect 
of jitter (i.e. the precise choice of A T )  is more pronounced. Even so, two properties 
stand out clearly (see figure 7 d - f ) .  First, (uv), (u6 )  and (vB) are all positive almost 
throughout the duration of the large-scale excursions. As uv,  uB and a are all 
positive in a jet, it is clear that the contribution to turbulent transport of the 
ensemble-averaged large-scale excursions is positive nearly everywhere. We also note 
that the products (u) ( v ) ,  (u) ( 8 )  and (v) (6) are also nearly always positive, 
suggesting a high degree of positive correlation between any pair of ensemble- 
averaged large-scale excursions. Quantitative estimates of this correlation are given 
in $ 4 (c). Second, with increasing 7, a gradual change occurs in the ensemble average 
shapes. Close to the region of maximum turbulent energy production (7 = 0.67 for 
example), a large fraction of the contribution to the average shear stress or heat flux 
occurs close to the back of the excursion ( t / F  2 0.7);  a small region where this 
contribution is relatively large can also be identified quite close to the front 
( t / F  5 O - l ) ,  especially in (uv )  and (v8). As 7 increases, no significant contribution to 

(G), (z) or (a) arises from the immediate vicinity of the front or the back; 
instead, most of the contribution is provided by regions well within the excursions. 
For example, a t  7 = 1.48, this region is 0.1 5 t / F  5 0.6. 

_ _  

_ _  

- -  

- -  - 

4. Statistics of superposed turbulence 
(a)  Mean-square values 

In  this section, we examine the properties of the superposed motion, as defined in 
$ 2.4. In  particular, we examine whether it is consistent with the requirements of 
local isotropy. In doing so, we should first establish that properties of this superposed 
motion are independent of the duration F for which it is defined (see $ 2.4). 
Figures 9(a)  and (b) show normalized r.m.s. values of small-scale u and w, namely 
u:/uo and vI /uo ,  plotted as a function of the duration T ,  for 7 = 0.67, 0.89 and 
1-48. Figure 9(c) shows a similar plot of 8z/ao. Although these r.m.s. values show a 
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FIGURE 9. Variation of the 'r.m.8.' values of us, v, and 6, as a function of p. Broken lines are 
drawnthrough the points for clarity. x ,  7 = 0.67;  0, 0.89; A, 1.48. (a) u:/uo; (b)  v:/fib; 
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dependence on F for TUJL 5 1,  they are very nearly independent of T for 
FUa/L 2 1. This near independence of F provides some a posteriori justification for 
the selection of a subset (in the region Ti-V,/L 2 1), rather than the totaIity of the 
superposed motion (see 5 2.4). Ideally, we must show that this behaviour is true of 
higher moments as well, but we soon run into convergence problems because of the 
limitation on the length of data records. A possible, although speculative, explanation 
for the dependence of u ~ / ~ ~ ,  v:/Uo and Ol/Bo on T for T 5 L/ua is as follows. It 
seems likely that small excursions, in 0 for example, occur largely when either top 
edges or sides of the large-scale structures skim past the sensor. A large fraction of 
these small excursions is presumably related to the viscosity-dependent superlayer. 
The relative fraction of this viscosity dependence should decrease in magnitude with 
increasing T and, at  sufficiently large T ,  should be of little consequence. Empirically, 
the range 2 L/Ua appears to be sufficiently large for asymptotic values of u:/U,, 
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FIGURE 10. R.m.8. velocity and temperature fluctuations across the jet. (a) 0,  ua:/uo; -, 
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OI 

v:/oo and @,"/Go to be attained. For each 7, the asymptotic value attained is different, 
being smaller for large 7. For any given 21, this asymptotic state can be taken as a 
characteristic measure of the r.m.s. of the superposed turbulence. 

These characteristic r.m.s. values, denoted by the additional suffix c,  are plotted in 
figures lO(u), ( 5 )  and (c) for 7 = 0.67, 0.89, 1.18, 1.48 and 1-63. For comparison, also 
shown are the conventional and conditional turbulent r.m.s. values. A partial 
indication of the accuracy of these characteristic r.m.8. values can be obtained by the 
scatter in the data of figures 9. A more direct indication comes from figures 11 which 
show ( ~ , 2 ( t ) ) f ,  (v:(t))* and (8,2(t))f as a function of t / p  within excursions of 
FD8/L = 2.5, AF/T = 50.2. The data are for 7 = 0.89. Vertical bars indicate 
95 yo confidence limits. It is interesting to note that, except for the end regions, the 
r.m.s. quantities are approximately independent of t ,  so that xi2 21 (G(t)) for 
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FIUUF~E 11. R.m.s. velocity and temperature fluctuations about the respective ensemble averages. 
7 = 0.89. -, AT/T = kO.28; -.-, kO.20; -..-, kO.12. Vertical bars indicate confidence 
intervals with 95 % confidence level, A!?/p = 

_ _  
0.20. 

0.1 < t /T < 0.9. It is also of interest (from figures 10) that u:~, v12 and O",z are 
approximately equal to ( U  - Ct);, ( V - E): and (0 - B,); respectively. This follows 
from the approximate relation (see (2.4) and (2.3)) 

x,"z = ( ( X - ( X ) ) 2 )  N ( X - X t ) f  
- 

This approximation is not as good for 0 as for U and V because (0)-8, has a 
non-zero (but small) value for this value of p .  

Figure 12 shows the variation of the ratio uI/v," as a function of T. Again, the 
ratio is independent of for 2 L/na, and is equal to unity as one would expect for 
isotropic turbulence. This, in itself, is a significant result, and needs an explanation 
when one considers that the ratios u'/vf  and u; /v; are also approximately equal to 
unity (see table 1). The combination of these two results implies either that the large- 
scale motion is also not far from being isotropic or that its contribution to the total 
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?I w9 w o  woo uf/d u p ;  ,'/ti' 

0.67 0.006 0-005 0.010 1.07 1.07 1.78 
0.89 0.018 0.012 0.037 1.09 1.08 1.77 
1-18 0-050 0.033 0.153 1.08 1.05 - 
1-48 0-039 0.065 0.270 1.02 0.94 1.80 
1.63 0.015 0.048 0.265 0.96 0.90 1.66 

TABLE 1. Some turbulence parameters across the jet, 

1 . 0 1  1 
0.6 0.8 1.0 1.2 1.4 1.6 I .8 

1) 

FIQTJRE 14. Ratio of mean-square derivatives of velocity fluctuations of 
superposed turbulence. 

(b)  Mean-square derivatives 

If the superposed motion is locally isotropic, one of the conditions it would have to 
satisfy is 

Using the notation described in $ 2.4, we can write this as 

g " u , " 2  = 2, 

where a dot indicates a derivative with respect to time. Figure 14 shows that this is 
approximately satisfied except possibly far away from the axis. As can be seen from 
table 1, the ratio d 2 / u 2  is not very different from the ratio v,"2/u,"2,  although the 
latter is probably closer to 2 than the former. This supports our earlier speculation 
($ 1 )  that the contribution of the large-scale motion to the mean-square derivative 
of a given quantity may be small.? Figure 15 shows that this contribution is about 
20 % in the case of 0 and about 10 % in the case ofv and u. Interestingly, for the ramp 
model hypothesized by Sreenivasan & Antonia (1977) the ratio of the mean square 
of the derivative of large-scale motion in 0 to that of the superposed 0 fluctuations 
was estimated by an entirely different (and indirect) method to be about 0.25, 
consistent with the present more direct estimates. 

-- 

t The dependence on R, of this contribution would need further experimental work. 
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1) 

FIQURE 15. Ratio of r.m.8. derivatives of superposed turbulence to  those of 
large scale. 0, tit/tii; x , ":/ti:; A, &/&. 

(c) Turbulent transport by the large scale 

Bradshaw, Ferriss & Johnson (1964) and Bradshaw (1967) suggested that the large- 
scale motion produces a significant proportion of the shear stress in mixing layers 
and outer part of a turbulent boundary layer. Lu & Willmarth (1973), on the other 
hand, showed that a significant fraction of the Reynolds stress in the outer regions 
of a turbulent boundary layer occurs in scales of motion which are much smaller than 
the characteristic size of the large eddies. Using simultaneous visual and hot-wire 
studies, Falco (1977) observed that the largest fluctuations in uv coincided with the 
occurrence of his typical eddies which have an average size of the order of the Taylor 
microscale. Using our present technique, it is possible to evaluate the fraction of the 
average stress or heat flux due to large-scale excursions alone. As the results for 
the shear stress and heat flux are essentially the same, we shall present data only 
for the shear stress. Figure 16(a) shows the fraction of the contribution to the 
total shear stress from the large-scale patterns ; data correspond to Ta,/L = 2.5, 
h T / T  = 0.2. It is seen that, in regions of substantial turbulence production, it is 
the superposed motion that accounts for most of the shear stress. As the distance 
from the jet axis increases, however, an increasingly larger fraction of the local 
shear stress arises from the large-scale patterns. (The shear stress itself is small far 
away from the axis.) We recall that, in the region of significant turbulent energy 
production, most of the shear stress or heat flux in the large-scale patterns occurs in 
the 'skin', especially the backs (figures 7 and 8). In this sense, the data of figure 16(a) 
are likely to have overestimated the large-scale contribution in that region. 

Some caution is however necessary in interpreting the above result, because of the 
possible lack of unique correspondence between large-scale structures and large-scale 
excursions of the same scale : just as some large-scale excursions of a given duration, 
say if,, arise from structures of even larger scale, it is equally possible that some 
structures of duration pl almost certainly fail to give rise to excursions of duration 
ifl. This lack of correspondence is further compounded by the possible multi- 
valuedness of the turbulent/non-turbulent interface. Even if a spatial array of 
sensors is used, this question remains essentially unanswered. 

_ _  
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It was suggested in $ 3 that a high degree of correlation exists between ensemble 
averages of large-scale excursions. We can obtain correlation coefficients for the 
large-scale motion, defined as - - 

These coefficients evaluated for pga',IL = 2.5, ATIT = kO.2 are plotted in 
figure 16(b). From the ensemble averages of figures 7(a)-(c) ,  and the definitions of 
xL and xL, it  is quite clear that the reliability of these correlation values is not very 
high ; simple estimates show that errors of the order of 30 % are quite likely. However, 
there is little doubt that these results indicate a high degree of correlation within 
the large-scale motion, except possibly towards the outer edge of the jet. 

c,, = xLYL/x:Y';, _ _  

(d )  Probability density functions 

Results of previous sections have emphasized the significant role played by the 
superposed turbulence. Here, we examine the probability density functions (p.d.f.s) 
of the superposed motion. Results are presented for 7 = 1.48 (y  N 0.28). In  figure 17, 
the normalized p.d.f.s of us, us and 8, are compared with corresponding conventional 
and conditional (turbulent) p.d.f.s and Gaussian p.d.f.5 (with experimental values 
of the mean and variance). The differences between the p.d.f.5 of us, us and 0, from 
those of u, v and 8 or ut, vt and 8, (respectively) are dramatic. It is also clear that the 
p.d.f.s of us, v, and 8, are significantly closer to Gaussian form, resembling the situa- 
tion in homogeneous turbulence, suggesting that the superposed turbulence has a 
quasi-homogeneous behaviour. 
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OL 

Similarly, figure 18 shows p.d.f.s of ti,, C, and 8, a t  7 = 1.48. Again, they are com- 
pared with corresponding p.d.f.s of conventional derivatives and the Gaussian p.d.f. 
Although no dramatic differences between 6 and 8, are apparent from this figure, a 
very significant result concerns the skewness of the derivative of O,, as compared 
with that of 8. To see this clearly, the quantity a3p(a) has been plotted against a in 
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FIGURE 17. Probability density functions. (a )  x ,  a = uJu:; ---, ut/u:; -.-, u/u'; ( b )  x ,  

lence aoa,/L = 2.5, AF/F = kO.2. -, Gaussian. 
u = v,/v:; ---, WJW; ; -.-, w / ~ r ;  (c) x , u = e,/e;; ---, e,/e; ; -.-, e/e/ .  For superposed turbu- 

figure 19, where a is either e,/& or 818'. The areas under these curves must be equal 
to the skewnesses of 8, and 8 respectively. Consistent with all other measurements of 
temperature derivative found in the literature, the skewness of 8 has a magnitude of 
about 0.87 (as given by the area under full curves). Because of the limited number 
of samples ( -  lo4), there is considerable scatter in the case of 8,, but it is clear that 
the skewness of 8, is much smaller than that of 8. It is interesting to note that the 
most significant changes in 8, occur in the lobe with 8, > 0, which would indeed be 
expected if the asymmetric ramp structures are removed from the turbulent signal. 
Using the dashed line to approximate the points, we obtain Sas N 0-33. We emphasize 
that the fractional contribution of the superposed turbulence to the third moment of 6 
is considerably smaller, and is about 30 yo of that of the total signal. 

Because this is an important result, further corroborating evidence would be 
worthwhile ; we can do this by independently evaluating the complementary quantity, 
namely the contribution of large-scale temperature patterns to the third moment of 6. 
For instance, a t  7 = 0.89, fitting a curve shown in figure 6 to the ensemble average 
of large-scale excursions, we can show that the contribution of the large scale to the 
third moment of 8 is about 70 yo, consistent with our earlier result. (The third moment 
of the total signal is equal to the sum of contributions from the large-scale and super- 
posed turbulence, if the two scales of motion are independent.) Considering the 
somewhat limited accuracy of the results plotted in figure 19, and the moderate 
value of R,, a useful conclusion appears to be that the derivative of 8, has negligible 
skewness. We conclude that the breakdown of local isotropy is due to the large- 
scale structure. 
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FIGURE 18 (a) and ( b ) .  For legend see p. 767 .  

( e )  Spectral demities of superposed turbulence 

Figure 20(a)  shows a comparison at  7 = 0.89 between normalized spectral densities 
q5u, & and q5@ of conventional turbulence quantities and q5u8) q5v8 and $os of the 
superposed fluctuations (TDJL = 2.5, ATIT = kO.2). (Instead of c $ ~ ,  q5v, do, 
it  would seem more appropriate to use spectral densities of fluctuations in the 

- _  
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FIGURE 18. Probability density functions of derivatives. (a )  0, a = CJzir ;  -, U/C’. (b )  
symbols, a = 6,/tj: ; -, d/V‘. (e) symbols, a = 6,/&’ ; -, 8/8‘. In (b)  and ( c )  symbols are A, 
AT/F = 0.28; 0, 0.20; X ,  0.12. 

turbulent part only of the flow, in order to  eliminate the additional effect of inter- 
mittency on spectral densities. However, the intermittency factor y a t  this station 
(=  0.93) is almost unity, so that a useful comparison can be made with conventional 
spectral densities.) The greatest differences between spectra of superposed fluctua- 
tions and those of conventional quantities occur in the case of temperature. Because 
the effect of large-scale motion should no longer be present when we consider the 
superposed turbulence, we expect all the energy to  reside in frequencies fL/ga 2 0-4 
or 2nfL/Oa 2 5 and none a t  lower frequencies. However, because of the inherent 
ambiguities of the one-dimensional spectra in representing the energy of essentially 
three-dimensional variables (see, e.g., Tennekes & Lumley 1972, p. 248)) this last 
feature is not unambiguously clear from these curves ; figure 20 ( a )  is not inconsistent 
with this expectation. Note that all spectra of superposed fluctuations show a mild 
peak a t  the low frequency end. Again, the interpretation of these peaks is a little 
difficult, but one observation is worth making. If fp is the frequency corresponding 
to these peaks, the present value of DI/fpL is in the range 3-4. Allowing for the 
slightly different normalizing length scale, this is of the same order as the non- 
dimensional value of the high frequency pulses of Badri Narayanan, Narasimha & 
Rao (1971) in a turbulent wake, and of Rao, Narasimha & Badri Narayanan (1971) 
andUeda & Hinze (1975) in a turbulent boundary layer, and also of the large amplitude 
small-scale Reynolds stress-carrying motion investigated by Lu & Willmarth (1 973) 
in the outer region of a turbulent boundary layer. 

It is instructive to  replot the same data without normalizing in both cases, in such 
a way that the energies a t  any given frequency are comparable in ‘conventional’ 
and superposed turbulence. This can be achieved in the simplest way by suitably 
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weighting - the spectra of superposed fluctuations, e.g. multiplying g50s by the ratio 
@/@. We denote these weighted spectra by $u8, $v8 and corresponding to u,, 
v, and 8, respectively. Figure 2 0 ( b )  shows a comparison between $v,, $,,* and $.e, 
and &, q5v and q50. It is immediately clear that differences between the superposed 
turbulence and the conventional turbulence occur essentially at  lower frequencies, 
and that there are only very minor differences at high frequencies. The significance 
of this result will be discussed in Q 5. 

To ascertain the accuracy of the present spectral information related to the super- 
posed motion, the following check was performed. By using the technique described 
in 5 2.4, in addition to the spectra of us, v, and 8, corresponding to Fg,IL = 2.5, 
ATIT = 0.2, spectra of the fluctuations u, v and 8, also from the same excursions, 
were obtained. By appropriately weighting these spectral densities and forming the 
required differences, spectral densities of the ensemble average shapes may be ob- 
tained. The latter information can also be obtained by fitting simple algebraic 
expressions to the ensemble average shapes of figure 7, and subsequently doing 8 

Fourier analysis. For all cases examined where both sets of calculations were per- 
formed, the agreement was found to be quite satisfactory. 

_ -  

5. Conclusions and further discussion 
The main conclusions that emerge are: 
(a) Some identifiable patterns can be found in velocity and (especially) temperature 

signals. 
( b )  The patterns contain certain highly correlated non-trivial mean shapes which 

can be determined by a selective ensemble averaging procedure outlined in 0 2.4. 
The fraction of the turbulent energy associated with these patterns is small through- 
out the flow. The corresponding fraction of the turbulent shear stress or heat flux is 
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also small in the region of turbulent energy production, but becomes somewhat 
larger in the outer regions of the jet. 

(c) In  the case of v and 8, mean shapes of these patterns are highly asymmetric, 
and account for most of the skewness of the respective derivatives. 

(d )  After removal of these mean patterns from the respective signals, statistics 
of the remainder called the 'superposed ' turbulence, are consistent with local 
isotropy. In  particular, the derivative of the superposed fluctuation 8, has negligible 
skewness in comparison with the derivative of 8. 

(e) The superposed motion carries a significant proportion of turbulent stresses 
(both normal and shear), especially in the region of large turbulence production. 

(f) The probability density functions of the superposed fluctuations are nearly 
Gaussian in shape. 

(9) Their spectra reveal a mild peak a t  a non-dimensional frequency comparable 
to the bursting frequency observed in various shear flows. 

26 FLM 94 
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FIQURE 20. (a) Normalized power spectral densities q5z of conventional turbulent and superposed 
fluctuations. 9 = 0.89. 0, 1: = u ;  0 ,  u,. A, x = V ;  A, v8. 0, 1: = 8; D, 0,. Full lines through 
filled symbols and broken lines through open symbols are drawn only for clarity. ( b )  Weighted 
spectra ?,h= of the superposed turbulence compared with the spectra of conventional turbulence 
quantities. Open symbols refer to conventional quantities and filled-in symbols to the superposed 
motion. 0, u ;  A, v; 0, 8. 9 = 0-89. 

When interpreting these results in the context of the detailed flow structure, it is 
necessary to remember the limitation of single-point measurements in obtaining 
information about three-dimensional structures. Despite this limitation, it is 
reasonably clear that large-scale patterns or excursions in turbulent signals arise 
when large-scale structures cross the measuring probe. Conclusion ( b )  above then 
means that the turbulent motion that rides over the large turbulent structures 
carries a significant part of the Reynolds shear stress. This is not necessarily in 
conflict with the one-dimensional spectral measurements of uv, which show that a 
large part of UV occurs a t  low frequencies. The intermittency of uv may spuriously 
lead to  this latter result. Further, the characteristic scale of the superposed fluctua- 
tions is not small in that it is much larger than that of the dissipative scales of 



Local isotropy in a heated turbulent je t  771 

turbulence. Unfortunately, it is not possible, at  present, to identify this scale with 
the other more familiar scales of turbulence. 

With regard to the applicability of local isotropy, a significant result is that 
the presence of anisotropic large-scale structures is responsible for the observed 
skewness of Os. Gibson et al. (1977) also considered this possibility, but concluded that 
ramp-like structures can in fact produce a much larger value of skewness than 
observed, presumably due to the specific model they chose for the superposed small- 
scale motion. Another implication of Gibson et al. is that the presence of mean shear 
and mean temperature gradient is sufficient to produce large-scale ramp-like structures 
which, we now believe, are responsible for the breakdown of local isotropy. In  support 
of this implication we recall that Antonia et al. (1978) and Sreenivasan et al. (1979) 
have shown that for heated grid turbulence (where temperature fluctuations reveal 
no ramp-like structures) the skewness of 8, T 0. The data of figure 1, which en- 
compass measurements in various shear flows, suggest that the magnitude of So= is 
insensitive to the (suitably defined non-dimensional) magnitude of the shear. It thus 
seems that the breakdown of local isotropy is connected to the presence of mean 
shear in a somewhat subtle wayt: only its presence and sign are important and not 
its magnitude ! 

To clarify this and other issues, further work is clearly desirable in different flows 
and preferably at  high Reynolds numbers. Although all measurements reported here 
were made a t  a moderate R,, this does not appear to be a crucial factor, as the 
following argument would suggest. With the present classification in mind, it is 
convenient to regard the skewness So, as being made up of separate contributions 
from the large and small scales of 8, with no significant interaction between them. 
At small Reynolds numbers, the small-scale 8 is also likely to be locally anisotropic 
(and hence its derivative skewed). As the Reynolds number increases, the small 
scale becomes more closely isotropic, so that there is a tendency for So$ to decrease 
initially with increasing R,. For Reynolds numbers which are large, the small 
scale contributes little to the skewness of Ox, and the large scale is solely responsible 
for it ; hence the observed independence of So, on R,,. From figure 1, it appears that 
R,, 2 50 can be considered ‘sufficiently large’ in this respect. It is plausible that with 
increasing R, the fractional contribution of the large scale to the mean-square 
derivative may decrease and become negligibly small in the limit of infinitely large 
R,,, but as long as the large-scale patterns have sharp asymmetric edges, there will be 
a contribution to So, from the large scale. 

An implication of these results is that, in some sense, a small fraction of high 
frequency content is due to the large scale. These high frequencies which contribute 
to the skewness of 8, may or may not overlap, in general, with the dissipative range 
of frequencies, depending on the Reynolds number and the way in which the sharp 
edges of large-scale excursions vary (if they do) with R,,. Simple estimates of the 
skewness-contributing frequencies can be made for the present flow. At 7 = 0.89, 
for example, the skewness of 8, arises from excursions essentially in the range of 
duration 1 5 Foa/L 5 20. While there are very few or no excursions of larger 
duration, smaller excursions are symmetric on average (see figure 6) and hence do not 
contribute to So$. Noting that the ratio of the sharply rising part to that of the 

More is now known about the role of mean shear and mean temperature gradient in 
producing the skewness of 8, (Sreenivasan & Tavoularis, in preparation). 

26-2 
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gradually sloping part of (0) (i.e. the ratio ABIBC in figure 6 )  to  be about 1/20, 
most of the skewness can be considered to arise from the frequency range 
1 5 fL/ga 5 20. This is also the range of frequencies with significant dissipation, at 
least with respect to the 6, spectrum, which peaks at fL/ga 2: 6 .  It is thus clear 
that the skewness-contributing frequencies cannot be separated from those contribut- 
ing to FE. Consequently, in the range 1 5 fL/oa 5 20, some consistent differences 
must be observed between the 8 spectra (which contain all frequencies) and 6, 
spectra (which contain no skewness-contributing-high frequencies). But because the 
skewness-contributing frequencies make only a small contribution to the mean-square 
value of ex, these differences cannot be expected to be dramatic, as is in fact shown by 
figure 20(b) .  

These arguments suggest a simple experiment. If we pass 6 through a band-pass 
filter with the low pass setting at the Kolmogorov frequency and with a variable high 
pass setting, and compute the skewness of the derivative of the filter output, the 
following result should occur. As the high pass setting varies from zero to fL/ua N 1, 
little change should take place in the skewness of the derivative of band-pass 6. 
However, as the high pass setting moves through the range 1 fL/ua 5 20, the 
skewness must gradually decrease and must vanish for fL/ua M 20. The result of 
such an experiment (for 6 at 7 = 0) is shown in figure 21. Considering the simplified 
nature of these arguments and the fact that analogue instrumentation was used in this 
set of measurements, the figure lends overall support to our arguments. Recently, 
Tavoularis (1978) has also obtained similar results using digital techniques in a 
uniformly sheared flow with a constant mean temperature gradient. 
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Flow R, (e/v)) I@/&l-l k,/lOk, Se= 
Heated jet 

7) = 0.89 220 23 16 - 0.90 
7) = 1.48 125 17 16 - 0.88 

Heated boundary layer 7 50 66 82 -+ 0.85 
(Mestayer et al. 1976) 

TABLE 2. Conventional tests for local isotropy. 

Appendix A. General criteria for local isotropy in the jet 
The necessary basis for a quantitative assessment of local isotropy has been 

suggested by Corrsin (1957, 1958). We shall here consider two of the criteria discussed 
by Corrsin. His arguments are essentially that the necessary condition for local 
isotropy to be a good approximation at  a given wavenumber is that the time scale 
characterizing the transfer of energy to higher wavenumbers must be small com- 
pared with, say, the inverse of mean rate of strain. He showed that, in the range of 
wavenumbers where inertial transfer and viscous dissipation e we both important, 
the condition is 

Another requirement is that the wavenumbers be higher than those corresponding 
to the turbulent energy production. Corrsin ( 1958) estimated this latter wavenvmber 

(./V>* % p q a y 1 .  

kp to be 

For the dissipative part of the spectrum to be governed by isotropic conditions, 
all wavenumbers over which significant dissipation occurs should be greater than kp. 
If the wavenumber k ,  corresponding to the peak of the dissipation spectrum is taken 
as a representative measure of the dissipative wavenumbers, we require then that 
k, kp. Noting that usually k ,  x O-lk,, (see, e.g., the summary diagram of Grant, 
Stewart & Moilliet 1962), where k, is the Kolmogorov wavenumber, we should have 

k,  % 10kp. 

Table 2 lists the Reynolds number, the ratios (e/v)* (aU/ay(-l and k,/lOk, at two 
radial positions 7 = 0-89 and 1.48 in the present jet flow. For comparison, corre- 
sponding data are provided for a fairly high Reynolds experiment (Mestayer et al. 
1976) in a heated turbulent boundary layer. It is clear from these considerations that 
local isotropy would be expected to prevail over most of the dissipative scales of 
motion. 

Appendix B. Experiments with random noise 
It is necessary to establish that ensemble averaging and other signal-processing 

techniques used in this paper do not artificially produce ‘patterns’ where none exist. 
In this appendix, we report on the result obtained from applying the ensemble 
averaging technique to random white and ‘patternless ’ noise produced by a com- 
mercial random noise generator. A threshold was selected, as in the case of turbulent 
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FIGURE 22. Ensemble averages for random white nois_e. La) F = 150 sampling intervals. 
(b )  = 50 sampling intervals. AT/T = 5 0.20. 

FIGURE 23. Spectral densities of random white noise. 0,  total noise signal. 
x , 'superposed' fraction of noise. 

signals, but with the difference that, for the random noise signal, no real meaning 
can be attached to the threshold. All excursions within a given range of duration 
were ensemble averaged and the results are shown in figure 22 for two values of p .  
Results corresponding to other durations are essentially similar and exhibit only 
minor and unimportant differences from those shown in the figure. Over the entire 
duration of the excursions, the amplitude of ensemble averages is uniform, suggesting 
that the shapes shown in figures 7 and 8 are not a spurious result of the technique 
but genuine features of turbulence signals. Further, in the case of random noise, the 
amplitude (which is independent of F )  is exactly equal to the time mean of the noise 
above the threshold, i.e. the time mean value of all (pseudo-) excursions forming the 
ensemble. If (G) and ct represent respectively the ensemble average shape of pseudo- 
excursions of a given duration and the time mean value of the random noise above the 
threshold, we have, in the notation of 3 2.4, 

for all p. This suggests that one way of emphasizing the structure in ensemble 
average shapes for a turbulent signal x is to plot the quantity (x)-Et  = (x-Zt). 
If such plots reveal a characteristic shape whose amplitude is substantially different 
from zero, it is likely that this shape identifies some definite non-trivial structure. 

For relatively low frequencies significant differences are observed between the 
spectral density of a turbulence signal x and that of its small-scale fraction x8 
(figures 19a, b ) .  Computations of the analogous spectral densities for white noise are 
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shown in figure 23. It is clear that the ‘superposed’ random noise has precisely the 
same spectral density as the total random noise. The differences between q.ix and 
q.ix8 in figures 19 (a)  and (b )  must arise from genuine feature4 of turbulence signals. 
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